
���

����������	
��������������������������������

An Extension of Situation Calculus Applied to
Project Management

Fabŕıcio Jailson Barth and Edson Satoshi Gomi

Intelligent Techniques Laboratory
Department of Computer Engineering

Polytechnic School. University of São Paulo
Av. Prof. Luciano Gualberto, 158 tv. 3. 05508-900. São Paulo, SP, Brazil

{fabricio.barth,edson.gomi}@poli.usp.br

Abstract. The Situation Calculus has been used as a tool to develop
planning systems. However, the traditional Situation Calculus does not
supply mechanisms to represent actions that consume resources and rep-
resent time, which are features that are important in applications like
Project Management. This work presents an extension of Situation Cal-
culus which allows representation of time description and actions that
consume human and material resources. The application of this extended
calculus is exemplified by a project planning case of the telecommunica-
tions area.

1 Introduction

An intelligent agent must be capable to plan its actions in advance. Such ability
is essential to achieve intelligent behavior and its implementation is extremely
important in practical applications, e.g. project management, robotics, manu-
facture, logistic, space missions, etc.

Several planning algorithms had been proposed in the last years. In those
proven correct there are many limitations, according to representation of actions
and computational performance. Consequently, they cannot be applied to solve
problems of the real world. On the other hand, practical planners, capable of
solving many problems, have been constructed in ad-hoc way, being difficult to
customize to be used in different applications.

An example of practical application is in management of projects. The do-
main of project management demands, among others features, the ability of to
represent concurrent actions, resources usage and actions duration.

Through the use of formal logic it is possible to construct correct project
plans based on well known principles and that can be validated, maintained and
modified easily. It remains to be investigated, whether this kind of planners can
be executed in a real domain, or can represent all relevant problem information.

McCarthy and Hayes [7] proposed a language based on logic first-order,
named Situation Calculus. There are some restrictions of the Situation Calculus
that obstruct the representation of actions of a practical domain, for example,

���

����������	
��������������������������������

there is no easy way to represent actions that consume resources and represent
duration.

This work presents an extension of Situation Calculus capable of representing
actions that consume resources and explicit time. The goal is to apply this ex-
tended calculus to develop support tools for project management planning and
controlling processes.

This paper is organised as follow. Section 2 presents some fundamental project
management concepts. Section 3 presents the Situation Calculus. Section 4 de-
scribes how to associate a situation with a time point. Section 5 shows a proposal
to represent actions that consume resources in the Situation Calculus. Section
6 shows how it is possible to represent resources expenses over time. Section 7
presents a logic program based on the extended Situation Calculus. Section 8
shows an example of implementation in project management domain. Finally,
section 9 presents the final remarks.

2 Project Management

Organizations usually perform works that involves projects [3]. Different projects
share many features. For example, they are performed by people, constrained by
limited resources, and planned, executed and controlled.

A project can be defined as “a project is a temporary endeavor undertaken
to create a unique product or service” [3]. Temporary means that every project
there is a definite beginning and a definite end. Unique means that the product
or service is different in some distinguishing way from all similar products or
services.

Projects are undertaken at all levels of the organization. They may involve
a single person or thousands of people. Projects may involve a single unit of
one organization or may cross the limits of the organization. They are often
critical components of the performing organization’s business strategy. Examples
of projects include: development of a new product or service, making a change
in structure of an organization, designing a new transportation vehicle, etc.

Project Management is the application of knowledge, skills, tools, and tech-
niques to project activities in order to find or exceed stakeholder needs and find
expectations from a project. Finding or exceeding stakeholder needs and expec-
tations invariably involves balancing competing demands among: scope, time,
cost and quality; stakeholders with differing needs and expectations; identified
requirements (needs) and unidentified requirements (expectations).

An important task in the project management is the accomplishment of a
plan for the project execution.

A project’s example is presented in figure 1. This plan represents a con-
struction of radio base station. A radio base station is a product developed for
telecommunications companies, and has as objective to make possible commu-
nication between devices of a mobile telephone system.

The example presented in figure 1 is a simplified case that represents a set
of tasks and their dependence relations.

���

����������	
��������������������������������

Fig. 1. Gantt Chart example of the radio station base construct

3 Situation Calculus

Shanahan [9], presents Situation Calculus as being a logical formalism whose
elements are actions, effects and situations:

– situations: are full description of a specific situation of the real world;
– fluents: are functions that denote properties or relations that can change a

situation to another one;
– actions: transforms a situation into another one;
– Result(α, s): α denotes the resulting situation after executing the action α

in situation s;
– Holds(δ, s): this predicate defines that this fluent δ is valid in the situation
s1.

Besides these elements, the Situation Calculus has three classes of formulae:
effect axioms, domain constraints and observation sentences.

An effect axiom is a formula of the form ∀s[Holds(δ,Result(α, s))] or ∀s[Holds
(δ,Result(α, s)) ← Holds(δi, s)] and has the purpose of describing action effects.

A domain constraint is a formula of the form ∀s[Holds(δ, s) ← Holds(δi, s)]
and its objective is describe eventual domain constraints.

A collection of effect axioms and domain constraints is called domain de-
scription. In domain description must exist an effect axiom for each action.

An observation sentence is a formula in which every occurrence of Holds is of
the form Holds(δ, σ) or ¬Holds(δ, σ), where σ is a non-variable situation term,
for example: Holds(ready begin, s0).

The Situation Calculus cannot represent time, concurrent actions and actions
with duration [9, 1, 2].

Hence, to be able to use Situation Calculus as formalism to represent ac-
tions and changes in a project management domain, it is necessary to develop a
representation extension.
1 It is assumed that the goal is to represent the fact that is raining in the situation.
There is a way to do this, using notation Raining(S0). Another alternative is to
express the fact as Holds(Raining, s0).

���

����������	
��������������������������������

4 Associating a situation with time

Shanahan shows in [9], that there are two ways to interpret the idea of a sit-
uation in the Situation Calculus, both compatible with the original proposal
of McCarthy and Hayes, who define a situation as “the complete state of the
universe at an instant of time” [7].

The first way is think of a situation as being defined by the set of fluents
that holds in it. The second way is think of situations defined by the Result
function. According to this interpretation, there are the following axioms, which
Shanahan call the axioms of arboreality :

Result(α1, s1) = Result(α2, s2) → α1 = α2 ∧ s1 = s1 (1)

S0 �= Result(α, s) (2)

In this work, we chose the second way, that defines a situation as an unique
node in a tree of situations defined by the Result function.

The following restrictions will be assumed: (1) the domain had only discrete
units of time, and; (2) the domain has only instantaneous actions.

The relation of the time point with each node in a tree of situations, can be
represented in this form:

Time(S0) = 0 (3)

where 0 is an arbitrarily assigned value, and

Time(Result(a, s)) = Time(s) + 1 (4)

Hence, each situation of the tree of situations will be associated with one
time point (see figure 2).

Result(A1,S0)

Result(A2,S0)

Result(An,S0)

Tn

Discret Time Scale

Result(A1,Result(A2,S0))

Result(A2,Result(A2,S0))

Result(An,Result(A2,S0))

S0

T2T1T0

Fig. 2. The tree of Situations associanting with time point

���

����������	
��������������������������������

5 Representing actions that consumes resources

The word resources in project management refers to objects that can be con-
sumed, or “borrowed” during the execution of plans, constraining the possible
actions[8, 4, 6]. E.g., driving a car requires and cosumes fuel, building a house
requires and consume bricks, etc.

To represent resources in the domain, it is necessary to give the language the
ability to express a pre-condition of the type have($2, 50) and the planner can
execute this in an efficient way. .

Resources normally are represented as variable that can assume real or integer
values [8, 4, 6]. In this paper, all resources are represented through monetary
values.

The formula represents the amount of resources that an action α needs in
order to be executed:

∀α,∃ξ[Resource(α, ξ)] (5)

where ξ ≥ 0 and ξ ∈ R
2.

This new formula is added to the effect axiom:

∀s[Holds(Total, δ, Result(α, s)) ← Holds(β, δi, s) ∧Resource(α, ξ)] (6)

Where Total it is a variable that represents on the resources that is being
expended for the execution in the situation s. The result of Total is equal to β
plus ξ.

Formula (6) says that the action α to be executed needs resource ξ and during
the execution consumes the resource ξ.

Besides modifying the effect axiom’s form, it is necessary to modify the ob-
servation sentence’s form:

Holds(β, δ, S0) (7)

where β is the resources value expenses in the initial situation. The value of
resources expenses in the initial situation is always zero, because no action were
executed yet.

6 Representing resources expenses over time

One of the objectives of this work is construct an architecture capable of rep-
resenting the amount of resources expenses in a specific instant of time and/or
how much it will be necessary to spend to execute a given task. For example,
given a plan, what amount of resources is necessary in time point τ ?

It is possible to represent resources that each action spends. It is also possible
to associate each situation in one instant of time. But, there is not a direct
2
R means the real numbers set

���

����������	
��������������������������������

mapping between resources and time. The representation of resources expenses
over time is defined by the following formulas:

ResourceT ime(S0, T ime(S0), 0) (8)

ResourceT ime(Result(α, s), τ, ξ) ← Time(Result(α, s), τ) ∧ (9)
Resource(α, ξ)

ResourceT ime(Result(α, s), τ, ξ) ← ¬Time(Result(α, s), τ) ∧ (10)
ResourceT ime(s, τ, ξ)

7 A Planner Based on the Extend Situation Calculus

The Situation Calculus axioms can be used to construct logical programs to plan
or to supply prognostics.

Shanahan [9] describes a program of Situation Calculus as a conjunction of
the universal frame axiom3, in the form Holds(δ, result(α, s)) ← Holds(δ, s) ∧
¬Affects(α, δ, s), where the predicate Affects(α, δ, s) defined that fluente δ is
affected by the action α in situation s; a finite set of observation sentences, with
the format: Holds(δ, s0); a finite set of effect axioms, in the form:
Holds(δ, result(α, s)) ← Holds(δi, s); and a finite set of clauses Affects.

Hence, a Situation Calculus program that implements actions that consume
resources and represent time is the conjuntion of :

– the universal frame axiom:

Holds(Total, δ, Result(α, s)) ← Holds(β, δ, s) ∧ (11)
notAffects(α, δ, s) ∧

Resource(α, ξ)

where β + ξ = Total.
– a finite set of Affects clauses of the form:

Affects(α, δ, s) (12)

– a finite set of observation sentences of the form:

Holds(β, δ, S0) (13)

where β is the resources expenses value in the initial situation, and is always
equal zero.

3 When the Situation Calculus is used to describe effects of actions, besides describing
changes it is necessary to describe what remains unchanged (the frame problem). In
order to describe what remains unchanged, the Situation Calculus has the universal
frame axiom [9].

���

����������	
��������������������������������

– a finite set of effect axioms of the form:

Holds(Total, δ, Result(α, s)) ← Π ∧Resource(α, ξ) (14)

where Π does not mention the Affects predicate and every occurrence of
the Holds predicate in Π is of the form Holds(β, δi, s), where β+ξ = Total.

– a finite set of resources observation sentences of the form:

∀α[Resource(α, ξ)] (15)

– the time axioms of the form:

Time(S0) = 0 (16)

where 0 is an arbitrarily assigned value, and

Time(Result(α, s)) = Time(s) + 1 (17)

– the resources expenses by time axioms of the form:

ResourceT ime(S0, T ime(S0), 0) (18)

ResourceT ime(Result(α, s), τ, ξ) ← Time(Result(α, s), τ) ∧ (19)
Resource(α, ξ)

ResourceT ime(Result(α, s), τ, ξ) ← ¬Time(Result(α, s), τ) ∧ (20)
ResourceT ime(s, τ, ξ)

– a finite set of sentences of general clauses (background sentences) not mention
the predicates Holds or Affects.

These formulas can easily be transformed into clauses of a logical program.
For example, there is a clause for formula (13) that can be shown in the figure
3. The term ready begin is a fluent valid in the initial situation s0.

1 holds(0,ready_begin,s0).

Fig. 3. Observation sentence code (initial state).

Another example is the effect axioms code (14) which can be shown in the
figure 4. The term make installation floor is an action that can executed in
situation S, if the fluents make tests plant and installation floor are valid.
This action spends resources total which is the sum of resources spent to make

���

����������	
��������������������������������

the fluents test plant andmarking floor to be true (Y) plus the resources spent
to execute the action make installation floor (X).

1 holds(Total,installation_floor,result(make_installation_floor,S)):-

2 holds(Y,make_tests_plant,S),

3 holds(Y,make_marking_floor,S),

4 resource(make_installation_floor,X),

5 Total is Y + X.

Fig. 4. Effect axiom code.

The time axioms (16) and (17) are codified as described in the figure 5.

1 time(s0,0).

2

3 time(result(A,S),T):-

4 time(S,T1),

5 T is T1 + 1.

Fig. 5. Time axioms code.

The axioms for representating of resources expenses over one instant of time
are transformed as described in the figure 6.

1 resourceTime(s0,0,0).

2

3 resourceTime(result(A,S),T,Res):-

4 time(result(A,S),T),

5 resource(A,Res).

6

7 resourceTime(result(A,S),T,Res):-

8 \+ time(result(A,S),T),

9 resourceTime(S,T,Res).

Fig. 6. Resources expenses over time axioms code.

The universal frame axiom (12) is transformed as described in the figure 7.

��	

����������	
��������������������������������

1 holds(Total,F,result(A,S)):-

2 holds(Y,F,S),

3 not(affects(A,F,S)),

4 resource(A,X),

5 Total is Y + X.

Fig. 7. Universal frame axiom code.

Where the predicate not is an implementation of SLDNF-resolution [5].

8 Extendented Situation Calculus Implementation in
domain of Project Management

This section will demonstrate the representation of the actions applications in a
simple radio base station construction project, as shown in the figure 1.

Information about project actions that must be represented are: the prece-
dence between the actions, or either, the pre-conditions of each action; the de-
scription of the effect that the actions can generate, either positive4 or negative5;
and the resource (expressed in monetary units) that each action needs. These
information can be visualized in the table 1.

Table 1. Domain actions description

Action Pre-condition Effects Resources

make tests plant ready begin test plant 10 MU

make marking floor ready begin marking floor 15 MU

make installation floor test plant installation floor 10 MU
marking floor ¬ marking floor

put material camp test plant material camp 20 MU

make energize camp installation floor energize camp 30 MU

make assembly material camp mounted 20 MU
energize camp
installation floor

make tests mounted tests 15 MU

acceptance tests radio station 10 MU

For modelling these information in logic programming, we need to write in
accordance with the axioms presented in the last section.

After writing clauses that represents these information, we obtain a knowl-
edge base wich represents the domain’s capability.
4 Effects that modify the fluent value for true.
5 Effects that modify the fluent value for false.

��

����������	
��������������������������������

Applying a deductive mechanism on this knowledge base we can generate
plans or estimates, depending on the goal clause given. For example, if the goal
clause is holds(Total, w, result(make tests plant, s0)), the deductive mecha-
nism applied on the knowledge base return one estimate of the resultant situa-
tion. The search tree is showing in the figure 8.

X/10Y/0

Total is 0 + 10holds(Y,ready_begin,s0)

holds(Total,W,result(make_tests_plant,s0))

holds(Total,test_plant,result(make_tests_plant,s0))

resource(make_tests_plant,X)

Fig. 8. Search tree

On the other hand, if the goal clause is, for example, holds(Total, energize
camp, X), the deductive mechanism applied on the knowledge base generate one
or more plans that becomes fluent energize camp true. This plan returned in
the format result(α1, · · · , result(αm, s0)) unified with the variable X. And the
variable Total returns the total value from resources expenses for the plan.

The goal clauses can be expressed in other forms, restricting the plan, as
shown by following formulas, figure 9.

1 :- holds(Total,radio_station,Plan), Time(Plan,T), T =< 10.

2 :- holds(Total,radio_station,Plan), resourceTime(Plan,2,X), X =< 10.

Fig. 9. Object clauses code.

The goal in the first line asks for a plan that return radio station in the
maximum 10 units of time. While the goal in the second line asks for a plan that
return radio station and the maximum 10 MU of resources spend in time t2.

9 Conclusion and future work

This work presented an extension of Situation Calculus that makes possible rep-
resentation of actions that consumes resources and associations of each situation
with one time point.

���

����������	
��������������������������������

The analysis of presented examples makes clear that extend Situation Cal-
culus can be used in domains which need the representation of actions that
consume resources and need representation of time.

To achieve full representation requirements for project management domain
planners, it is necessary to develop an additional extension of Situation Calculus,
in order to make possible the representation of concurrent actions and actions
with duration.

Future work includes the extension of current calculus to represent concurrent
actions, actions with duration, time and resources at the same time.

References

1. José Júlio Alferes, Renwei Li, and Lúıs Moniz Pereira. Concurrent actions and
changes in the situation calculus. Proc. of IBERAMIA, pages 93–104, 1994.

2. Jorge Baier and Javier Pinto. Non-instantaneous actions and concurrency in the
situation calculus. In 10th European Summer School in Logic, Language and Infor-
mation, 1998.

3. Project Management Institute Standards Committee. A Guide to the Project Man-
agement Body of Knowledge. Automated Graphic Systems, Maryland, USA, 1996.

4. K. Currie and A. Tate. O-plan: the open planning architecture. Artificial Intelli-
gence, 52(1):49–86, 1991 1991.

5. Kees. Doets. From Logic to Logic Programming. Massachusetts Institute of Tech-
nology, 1994.

6. A. El-Kholy and B. Richards. Temporal and resource reasoning in planning: the
parcplan approach. Proc. ECAI-96, pages 614–618, 1996.

7. J. McCarthy and P.J. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. Machine Intelligence, 4:463–502, 1969.

8. Stuart J. Russel and Peter Norvig. Artificial intelligence: a modern approach.
Prentice-Hall, 1995.

9. Murray Shanahan. Solving the Frame Problem: A Mathematical Investigation of the
Common Sense Law of Inertia. The MIT Press, 1997.

