
A Meta-Level Architecture for Adaptive Applications

Fabŕıcio J. Barth, Edson S. Gomi
Laboratory of Knowledge Engineering (KNOMA)

Polytechnic School. The University of São Paulo, Brazil
E-mail: {fabricio.barth, edson.gomi}@poli.usp.br

Abstract

The goal of this work is to investigate meta-level ar-
chitectures for adaptive systems. The main application
area is the user modeling for mobile and digital televi-
sion systems. The results of a set of experiments per-
formed on the proposed architecture showed that it is
possible to reuse the components responsible for user
modeling if they are designed as meta-level compo-
nents.

1 Introduction

Currently most applications are developed for a large
variety of users. An important issue is how to create
adaptive applications that enable systems to satisfy het-
erogeneous needs. An adaptive system is a system with
the ability of adapting its own behavior (with respect
to performance and functionalities) to individual users
needs. Some examples of system functions that can be
adapted are: information retrieval, product recommen-
dation, learning support, and user interfaces. Beyond the
set of basic functions, systems may implement mecha-
nisms that permit automatic development of a user pro-
file, representing it in a user model. A user model is a
knowledge representation of the preferences which de-
termine the user’s behavior. Preferences are the basic
information necessary to provide system adaptability.

In traditional approaches, user modeling components
have been created integrated with other system elements,
without a specific component responsible for it. With
the growing complexity of the adaptive systems, devel-
opers need new methodologies, concepts and techniques
to overcome design difficulties and simplify the develop-
ment process.

In this work we propose a meta-level architecture to
separate the components responsible for the acquisition
and manipulation of user modeling from other compo-
nents of the adaptive system. This architecture has base-
objects in its lower level and meta-objects in its upper
level. Meta-objects can be defined as objects that de-
scribe the user model. The meta-objects can control a
base-object, in order to modify its structure and behav-
ior at execution time. This type of control is possible

due to the reflective computing concept. Reflective com-
puting is defined as the activities that a computational
system execute over itself, in a different way from other
processes, to solve their own problems and to search in-
formation about their own processes in real time.

To validate these architectures, experiments with in-
terface adaptive systems will be conducted. The adap-
tation capacity, the reusability degree and the reduction
in complexity of the implemented systems will be mea-
sured.

This paper is organized as follows. In section 2 the
concepts of adaptive systems and user modeling are pre-
sented; in section 3 the concepts of meta-level architec-
ture and reflective computing are described; in section 4
we propose an architecture that joins the meta-level con-
cepts and the adaptive systems; in section 5 the imple-
mentation of a mobile system with adaptive interface is
described. This system uses the architecture proposed in
this paper. Finally, in section 6, the final considerations
are presented.

2 Adaptive Systems

An adaptive system can be defined as a system with
the ability to adapt its own behavior (i.e. functionalities)
to the individual needs, expectations and abilities of the
users [1]. This kind of system should be able to imple-
ment mechanisms that allow the creation and storage of
the user model.

A user model is composed of the knowledge of the in-
dividual preferences that determine the user’s behavior.
Preferences are composed of information that is directly
necessary to the adaptation of the system’s behavior to
the user’s interests [2, 3]. For example, how many times,
how frequent and for how long a user accesses one link
in a web page.

Moreover, the user model may have personal infor-
mation about the user such as age and profession. This
information is not directly necessary for adapting a sys-
tem to the user, but can be utilized to create user stereo-
types. This allows the system to anticipate some of the
user’s behaviors [4, 5, 6]. Systems with that type of an-
tecipation has shown benifits to both users and service



providers [7]. However the development and mainte-
nance of those personalizable systems are very complex
and expensive, which suggests the need of a new ap-
proach for such undertaking [8].

In the majority of the related research works, user
modeling is performed by the application system, and of-
ten there is no clear distinction between the system com-
ponents that are used for user modeling purposes and the
components that perform others tasks [8, 9].

In this context, we believe that the utilization of a
meta-level architecture will help in the development of
adaptive systems.

3 Meta-Level Architecture

Computational reflection is the activity executed by a
computational system when the system computes (and
possibly affects) its own computations. Reflection is de-
fined as a way of introspection, in which the system tries
to draw conclusions about its computations and eventu-
ally influence them [10].

Computational reflection defines a new software ar-
chitecture paradigm. This architecture model is com-
posed of a base-level, where we find the system objects
that implement the system functionalities, and the meta-
level, where we find the data structures and actions to
be performed over the base-level objects [11]. The do-
main limits is the most interesting aspect of the reflexive
architecture, not only because it permits the construc-
tions of adaptive systems but also because it stimulates
the reuse of components. The main point is to allow the
application programmer to concentrate on the solution
of a specific problem of the application domain. In this
aspect, the meta-level architectures have been adopted
to express non functional characteristics of the system,
such as reliability and security, in an independent way
from the application domain.

The basic concepts of computational reflection are
[12]:

1. to separate the basic facilities from the non basic
facilities through architectural levels;

2. the basic facilities must be satisfied by the objects
of the application;

3. the non basic facilities must be satisfied by meta-
objects;

4. the non functional capacities are added to an ap-
plication object through its specific meta-objects,
and;

5. the base-object can be structuraly and behavioraly
changed at execution or compilation time.

In figure 1, we can see the reflection process in a com-
putational system. The computational system is divided
in two or more computational levels. The user sends a
message to the computational system. The message is
treated by the functional level, which is responsible for
performing the work correctly, while the non functional
level manages the work of the functional level.

User
User

Functional Level

Structural and 
behaviour changed

Information about
the functional level

Computational System

Non−Functional Level

Fig. 1. Reflective Computing System Overview

With this ability a system is more capable of changing
and adapting its structure and behavior. By separating
the base-level functions from the meta-level functions
we increase reusability, diminish complexity, and make
the system more flexible overall.

Computational reflection can be implemented by
functional, logic or imperative programming. However,
it is with the natural flexibility of the object model that
computational reflection has shown its effectiveness and
elegance in the resolution of programming problems
[13].

In computational reflection, classes, methods, at-
tributes and objects representations are redefined by
meta-classes and meta-objects. The level in which the
meta-classes and meta-objects are available is called
meta-level.

4 Proposed architecture

We propose an architecture for adaptive applications
that use the meta-level and reflection concepts. The
base-level contains all the basic functionalities (compo-
nent 1 - figure 2) while the meta-level holds all the ob-
jects that control the creation and adjustment of the user
models and stereotypes (component 2 - figure 2).

The meta-level has enough information to create and
adapt the user models, stereotypes or any other structure
necessary to adapt the system to the user. This is possi-
ble because the intersection concept (point (a) - figure 2)
provides all the base-level system data (structure, behav-
ior and user behavior) and observations of user bahavior.
In this way, machine learning methods (mainly classifi-
cation) process the data and offer support for resolution
of decision-based problems.



User Models

Stereotypes
(2)
Meta−Level Learning

Results

DecisionAquisition

Base−Level
(1)

(a) (b)
User Behaviour Adaptation

Computational System
USER

Fig. 2. Adaptive System Architecture

The decision can be used through the introspection
ability (point (b) - figure 2) for changing the system func-
tionalities (describes and executed by base-level) trans-
forming the system and adapting it to the user’s needs.

This architecture allows management of the functional
aspects separately from the ones related to the acquisi-
tion and maintenance of the user’s models. This is pos-
sible because the interface between base-level and meta-
level is unique. Meta-level components can be removed
and added to the architecture without modification to the
base-level.

5 Application Example
To verify the adherence of the meta-levels architecture

in adaptive systems, we implemented an adaptive system
that uses the proposed architecture.

In this example a book store system (client and server)
is implemented. The system is accessed by mobile
equipments (cell phones) that use J2ME (Java Micro
Edition) technology [14].

When the user is placing a book order using his cell
phone, the following steps are executed:

1. he is identified by the cell phone number;

2. he searches the book by the book’s name or by the
author’s name in the book’s catalog;

3. he selects the desired book or books;

4. he adds the book to his “shopping cart”;

5. he executes another search and adds more books
to his “shopping cart”;

6. he confirms the purchase, and;

7. he receives a message to confirm the purchase.

To attend the customers, the server side is imple-
mented using the Java Servlets Technology [14]. Ba-
sically, the server is capable of keeping the “shopping
carts” of the users, answering queries and finalize pur-
chases. The book’s database is written in XML. The
system architecture can be visualized in figure 3.

J2ME

Interface

javassist
java.lang.reflect.*

Meta−Control

XMLXML

servlets

Control Data

Server

Meta−Level

Fig. 3. Architecture of experiment

5.1 Meta-Level

While the base-level is responsible for all functional-
ities described before, the meta-level is responsible for
the acquisition of the user’s behavior beyond the compu-
tational system. Through the use of that information the
meta-level changes the behavior of the base-level with
the intention of adapting the system to the user.

Basically, the implemented features for this prototype
are: interface changes that adapt the presentation or the
navigation path, and; a list of recommended items for
each customer (like typically done by Amazon [15]).

During the adaptation of the interface, the text com-
ponents on authors and books are changed - removing,
inserting or ordering the components according to the
users’ preferences. In the adaptation of the navigation,
links are shown or hidden according to users’ prefer-
ences. The recommendation algorithms use input about
a customer’s interests to generate a list of recommended
items.

In both cases, the acquisition and maintenance of the
user model is carried out through the observation of the
user behavior. This is determined by means of the user’s
clicks and purchases.

The experiment showed that it is possible to reuse the
components (i.e. the presentation adaptation component,
the navigation adaptation component and the recommen-
dation algorithms). The only action that must be taken is
to change the components in the meta-level.

6 Conclusions

This paper described a meta-level architecture to sepa-
rate the components responsible for acquisition and ma-
nipulation of the users’ models from the other compo-
nents of an adaptive system.

The architecture proposed here can be used to add the
ability of adaptation to stable computational systems. It
also allows management of the functional aspects sepa-
rately from the ones related to the acquisition and main-
tenance of the user’s models.

To validate this architecture, a system with adaptive



interface was implemented. Through this experiment, it
was verified that it is possible to reuse the components
responsible for the user modeling only by adding them
as stable meta-level components. Moreover, the need of
tools to implement the computational reflection concept
was identified. In the example, the meta-control compo-
nent had to be built in the server side. This was because
the technology used to implement the clients (J2ME)
does not implement the computational reflection ability.

As future work, we plan to verify the applicability of
this architecture in other kinds of adaptive systems, for
example: adaptive information retrieval, recommenda-
tion systems and others.

Acknowledgments

The authors would like to thank Lavı́nia Boucault
Napolẽao and Luiz Carvalheira for all their remarks and
cooperation in this paper.

References

[1] Palazzo, L.A.M. (2002) Sistemas de
hiperḿıdia adaptativa. In: JAI 2002 - XXI
Jornada de Atualizacão em Inforḿatica,
http://gpia.ucpel.tche.br/∼lpalazzo/sha/

[2] Webb, G.I., Pazzani, M.J., Billsus, D. (2001) Ma-
chine learning for user modeling. User Modeling
and User-Adapted Interaction 11: 19–29

[3] Danilowicz, C., Nguyen, H.C. (2002) Using user
profiles in intelligent information retrieval. In
Hacid, M.S., Rs, Z.W., Zighed, D.A., Kodratoff,
Y., eds.: Foundations of Intelligent Systems. 13th
International Symposium. Number LNAI 2366,
Lyon, France, Springer-Verlag 223–231

[4] Rich, E. (1999) Users are individuals: Individual-
izing user models. International Journal of Man-
Machine Studies 51: 323–338

[5] Papatheodorou, C. (2001) Machine learning in user
modeling. In Paliouras, G., Karkaletsis, V., Spy-
ropoulos, C.D., eds.: Machine Learning and Ap-
plications. Number LNAI 2049. Springer-Verlag
Berlin Heidelberg, Berlin 286–294

[6] Orwant, J. (1995) Heterogeneous learning in the
doppelganger user modeling system. User Model-
ing and User-Adapted Interaction 4: 107–130

[7] Fink, J., Kobsa, A. (2002) User modeling for per-
sonalized city tours. Artificial Intelligence Review
18: 33–74

[8] Kobsa, A. (2001) Generic user modeling systems.
User Modeling and User-Adapted Interaction 11:
49–63

[9] Pohl, W., Nick, A. (1999) Machine learning and
knowledge representation in the labour approach to
user modeling. Proceedings of the Seventh Interna-
tional Conference on User Modeling. 179–188

[10] FERBER, J. (1989) Computational reflection in
class based object-oriented languages. SIGPLAN
Notices. 24: 317–326

[11] LISBÔA, M. (1997) Arquiteturas de meta-nı́vel.
Tutorial XI Simṕosio Brasileiro de Engenharia de
Software 1: 210-298

[12] WU, S. (1997) Reflective Java: making Java
even more reflexible. http://www.ansa.co.uk, Cam-
bridge, UK.

[13] KICZALES, J.G.R., BODROW, D. (1991) The art
of the metaobjects protocol. MIT Press, Cambridge

[14] SUN (2004) Java Technology. http://java.sun.com

[15] Linden, G., Smith, B., York, J.: (2003) Ama-
zon.com recommendations: Item-to-item collabo-
rative filtering. IEEE Distributed Systems OnLine
1: 24-26


