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Abstract. This paper presents a Search and Rescue (SAR) environment tailored
for locating shipwrecked individuals and evaluation of Reinforcement Learn-
ing (RL) algorithms under different scenarios, considering a variety of differ-
ent hypotheses, and an extensive number of experiments. Our findings indicate
that RL techniques, particularly Proximal Policy Optimization (PPO), signifi-
cantly outperform traditional greedy algorithms regarding success rates. Cen-
tralized network architectures demonstrate superior convergence compared to
decentralized ones. Historical search data does not notably enhance algorithm
performance, suggesting that real-time observations are sufficient. Agents are
able to naturally parallelize the search efforts within a given probability zone
while prioritizing higher probability areas first. Finally, while managing multi-
ple persons-in-water (PIWs) increases complexity, agents show effective coordi-
nation and improvement over time, underscoring the potential of RL in complex
SAR missions. This study highlights the promising role of RL in optimizing SAR
operations.

1. Introduction
The issue of missing persons-in-water (PIW) is as old as humankind itself, and given the
chaotic nature of the ocean, search and rescue (SAR) operations have never been optimal,
with limitations on the human ability ranging from the creation of proper search paths
to visibility and recognition of PIW. According to several authors, using drones allows
for continuous search over extended periods of time and distances. While the capabilities
of artificial intelligence (AI) with reinforcement learning for problem-solving are still in
their infancy, it is theorized that introducing AI for SAR applications may significantly
improve the efficacy of search operations and reduce the time needed to find and save PIW
[Wu et al. 2024, Ai et al. 2021]. Reinforcement Learning (RL) is believed to enable the
development of new, more efficient search patterns tailored to specific applications. This
is based on the hypothesis that reward maximization is sufficient to foster generalization
abilities, thereby creating powerful agents [Silver et al. 2021]. Such advancements could
potentially lead to the saving of more lives.

To enhance the effectiveness of Unmanned Aerial Vehicles (UAVs) in Search
and Rescue (SAR) missions, Alotaibi [Alotaibi et al. 2019] introduces the Layered SAR
(LSAR) algorithm. This method starts by focusing on a central disaster location where



most survivors are likely to be, then gradually expands the search area. Utilizing cloud
robotics, UAVs communicate with a central cloud manager, which orchestrates the oper-
ation. The disaster area is divided into square layers, each maintaining a list of survivors
with their coordinates, updated on the cloud server. UAVs are assigned to these layers,
sometimes with multiple UAVs per layer for enhanced efficiency.

In ”Maritime Search and Rescue via Multiple Coordinated UAS”
[Schuldt and Kurucar 2016], a coordinated strategy for UAVs in maritime SAR
missions is presented. This involves partitioning the search area based on probability
and assigning drones to specific sections, maintaining minimum distances between them.
A greedy algorithm matches the most capable UAVs to significant partitions, factoring
in endurance, camera quality, and survivor likelihood. The study also introduces an
equation for calculating the visible area of each drone.

Ai et al. 2021 explores reinforcement learning (RL) in maritime SAR, using boats
for the search. The study focuses on decision-making, search area determination, and
maritime vehicle deployment, using metrics like the probability of detection (POD), prob-
ability of containment (POC), and probability of success (POS). A drift prediction com-
ponent forecasts the trajectory of distressed objects, constructing a search grid with cells
assigned a POC. Using Q-learning, the algorithm selects actions to maximize POS based
on the current state. Experimental results show effective coverage with minimized redun-
dancy.

Wu et al. 2024 builds on this with deep reinforcement learning (Deep RL), us-
ing the DQN algorithm, where deep neural networks replace the Q-table, allowing the
algorithm to approximate values and choose the best action based on the environment.
Experiments show this approach matches or exceeds the Q-learning results, completing
SAR missions more efficiently. However, both methods assume a constant search area,
not accounting for dynamic factors like wind or waves during the search.

The LSAR [Alotaibi et al. 2019], Q-learning [Ai et al. 2021], UAS
[Schuldt and Kurucar 2016], and DQN [Wu et al. 2024] approaches all use proba-
bility regions to locate targets. LSAR consistently centers the highest probability region,
while other methods use maritime data and statistical methods. LSAR and UAS employ
multiple agents, with LSAR drones communicating upon detection and UAS agents
operating independently. Each approach aims to optimize SAR missions and enhance
success rates using distinct strategies.

Abreu et al. 2023 implemented a Reinforce algorithm that considers a dynamic
map of probabilities, representing the chances of a person being found, as well as the
position of other agents. The findings of this work provided a proof of concept, supporting
the notion that reinforcement learning strategies outperform predefined paths in terms of
efficiency and effectiveness. However, this work did not explore other aspects, like, state
representation, neural network architecture, and data sharing between agents.

This paper aims to define a Search and Rescue (SAR) environment and evaluate
and compare various reinforcement learning (RL) algorithms within these settings. Our
objective is to experiment with and enhance real-world SAR operations using multi-agent
reinforcement learning techniques, [Ai et al. 2021, Wu et al. 2024, Abreu et al. 2023] ap-
pear already to highlight the promising role of RL in SAR operations, and we will iterate



on said works demonstrating the potential for autonomous search parallelization as well
as high recovery rates in tested SAR scenarios. This paper is structured as follows: in
the section 2, we provide a detailed overview of a SAR environment; in the section 3, we
review and compare different RL algorithms that can be applied to this environment; in
section 4, we present our experimental setup and results; finally, we discuss our findings.

2. Environment
For this project, the Drone Swarm Search Environment (DSSE) framework, developed
by the authors and available as a Python package [Falcão et al. 2024], was used to study
the viability of using multi-agent reinforcement learning in searching for shipwrecked
people. This environment is designed to train RL agents to locate PIW and simulates the
movement of PIW in real time, concluding when all PIW are found or a certain time step
limit is reached. This environment incorporates relevant variables to the search scenario,
such as the POD, number of PIW, and vector values that guide the movement of both the
PIW and the probability matrix.

The environment is a 2D grid with a probability matrix representing the probabil-
ity of containing a PIW. The probability matrix is based on a Gaussian distribution and
a dispersion increment, which controls the Gaussian expansion rate. The distribution is
calculated using the bi-dimensional Gaussian function presented in the equation 1.
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where A is the amplitude of the Gaussian function, x0 e y0 are the coordinates
of the supposed position of the PWI. σx e σy define how the function will be stretched
along the matrix, and correspond to the dispersion increment, determining how quickly
the Gaussian expands in both directions. Finally x e y represent the horizontal and vertical
positions within the grid.

The dispersion increment dictates the rate at which the Gaussian expands. For
instance, a value of 0.1 allow faster expansion, suitable for cases where the PIW moves
rapidly, while 0.05 provides a slower, more precise spread. These values were chosen to
balance coverage and accuracy in different scenarios

The direction of movement is controlled by a vector representing ocean currents
and the wind. The PIW’s movement is influenced by the probabilities in the matrix,
selecting a pseudo-random direction weighted by the probabilities of adjacent cells and
an independent movement vector.

The environment states are represented as a tuple of two boxes: one for the drone’s
position (x, y) and another for the probability matrix. This allows the agents to use the
probabilities and their own positions to decide the best action, facilitating the orchestra-
tion of complex search patterns to find the PIW. The action space of the environment is
discrete, consisting of 9 actions: moving in the cardinal and inter cardinal directions and
searching the current cell. With a Probability of Detection (POD) of 1.0, the environment
is deterministic, but with lower values, it becomes stochastic. The problem presents itself
as a sparse reward problem, as the goal is reached only when the PIW is found, the reward
scheme, represents this, as it can be seen in the equation 2.



R(Ts) =
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where Ts is the time step that the PIW was found and Tslimit is the configurable
time step limit.

3. Reinforcement Learning Algorithms
To effectively compare and evaluate multiple search algorithms, we implemented
a baseline algorithm and utilized the RLlib [Liang et al. 2018] library to imple-
ment the reinforcement learning algorithms Proximal Policy Optimization (PPO)
[Schulman et al. 2017] and Deep Q-Network (DQN) [Mnih et al. 2015], supporting both
central and independent learning configurations [Albrecht et al. 2024]. Central learning
applies single-agent RL to joint actions for a central policy, while independent learn-
ing applies single-agent RL to each agent independently, ignoring the presence of other
agents.

DQN and PPO were chosen to represent the main algorithms from the value-based
and policy-based families, respectively. The two algorithms differ in their learning and
exploration strategies, which are crucial for the reinforcement learning process. PPO
selects actions by sampling from the probability distribution output by its policy network,
facilitating higher exploration when the agent is uncertain and greater exploitation as the
agent learns. In contrast, DQN uses an ϵ-greedy algorithm, balancing exploration by
sampling random actions and exploitation by choosing actions with the highest Q-value.

The baseline algorithm does not use reinforcement learning but leverages the prob-
ability matrix to guide agent actions. It follows a simple heuristic where each agent is
assigned to search the cell with the highest probability, focusing solely on exploitation.
This non-stochastic, easy-to-implement approach serves as a comparative tool to evaluate
the efficacy of the RL algorithms.

3.1. Data Collection
The training data was collected through simulated SAR missions in the DSSE environ-
ment, employing DQN and PPO algorithms and the baseline greedy search for compari-
son. The training process for the algorithms involves various configurations of the envi-
ronment, each using a 40x40 navigation grid in a multi-agent scenario with four agents.
A key variable in these configurations is the dispersion increment, set to 0.1 and 0.05.
Dispersion is the rate at which the probability matrix spreads within the environment. A
higher dispersion rate means the search area expands quickly.

The validation data was collected by running the SAR mission simulation 5,000
times. This involved the greedy algorithm and the trained DQN and PPO algorithms
across two neural network modes in the same environment. The figures 1a and 1b describe
the neural network (NN) used in the PPO and DQN implementation, respectively.

The training routine using RLlib [Liang et al. 2018] collected rewards received,
the number of actions taken, and whether the agents found the PIW in each trial. The
training data analysis involved calculating the moving average of the rewards and actions,
with the window size depending on the training batch. Data was collected in parallel



(a) NN for PPO
Implementation

(b) NN Diagram for
DQN

Implementation

Figure 1. Neural network architectures

using RLlib and stored by the Learner, the class within RLlib responsible for defining
neural network training parameters and data gathering for later analysis.

3.2. Hypotheses
Four hypotheses were formulated to test the efficacy and learning capacity of reinforce-
ment learning algorithms. For all experiments conducted, the same base configurations
were used: grid size of 40x40, 1 PIW, the probability matrix is centralized in the middle
of the grid, 4 agents (drones) positioned around the dispersion matrix on 4 edges of the
map, a dispersion increment of 0.1 or 0.05, and the default environment vector values
unless otherwise stated.

Hypothesis 1 (H1): Does reinforcement learning (RL) outperform a greedy strat-
egy when the person in water moves away from the region of highest probability? This
will be assessed by comparing the performance of agents controlled by a centralized al-
gorithm (PPO and DQN) against a greedy policy under the specified base configuration.
It is anticipated that RL will demonstrate superior adaptability and performance over the
greedy approach, especially as the PIW’s location deviates from predicted regions.

Hypothesis 2 (H2): Do agents trained with independent neural networks achieve
faster convergence than those trained with shared networks? This will be investigated by
analyzing the learning curve of agents in the base configuration, using a centralized and
an independent learning approach. The expected results for this hypothesis remain to be
determined, as early experiment data suggests that the independent approach converges
faster than centralized training [Albrecht et al. 2024]. However, some literature indicates



that centralized learning converges more quickly and enables better policy performance
[Labanca 2024]. We aim to ascertain which configuration and setup are optimal for this
problem.

Hypothesis 3 (H3): What is the impact of trajectory information sharing among
agents on search operations’ effectiveness? This will be examined in an environment
with large dispersion using the centralized version of the PPO algorithm. Two approaches
will be tested: one modifying observation with the agent’s trajectory and directly altering
probabilities on the matrix, and another utilizing a Long Short-Term Memory (LSTM)
network to handle sequential information regarding agents’ positions trajectories. We
predict that sharing historical search data among agents will enhance overall search effi-
ciency, enabling a more coordinated and informed approach to the search strategy. Fur-
thermore, recent studies have concluded that using recurrent neural networks, such as the
LSTM, in some partially observable environments [Li et al. 2015] can boost the trained
agent’s performance.

Hypothesis 4 (H4): Do agents develop new search patterns when there is more
than one PIW? This will be investigated by changing the number of PIWs to four on the
base configuration. It is expected that the drones will organize themselves to divide the
task and search in different areas. This strategic distribution is anticipated to increase the
coverage area, thereby enhancing the likelihood of detecting PIW and achieving a higher
success rate.

4. Results
The results for the Reinforcement Learning algorithms include the learning curves for
each experiment done and an analysis of their success rate and behavior. Each experiment
was conducted based on the previously stated hypothesis. The results of each experiment
are presented alongside their respective hypotheses, accompanied by considerations and
analyses.

H1: Does the RL algorithm outperform the greedy strategy in scenarios where the
PIW can move out of the region of highest probability?

Tests using RL algorithms on a 40x40 grid with dispersion increments of 0.1 and
0.05 show that RL outperforms the greedy approach in more complex environments.
PPO significantly outperformed the greedy approach, with a 75.44% success rate ver-
sus 35.84% for 0.1 dispersion increment and 83% versus 50.18% for 0.05. RL algorithms
can learn complex search patterns, coordinating to encircle the probability matrix in its
front and rear intercepting the PIW, suitable for unpredictable SAR missions.

Figures in 2 and 3 display PPO learning curves for these configurations and com-
pare PPO and DQN learning. According to these results, PPO learns a better policy much
quicker than DQN, achieving rewards between 1.4 and 1.75, while DQN reaches only 0.4.
PPO training took 3 hours, whereas DQN took 23 hours. PPO’s advantage is attributed to
its action probability distribution, allowing better exploration of states the agent has less
knowledge about. Thus, PPO was chosen for further tests.

H2: Does decentralized training improve convergence time and stability?

To test this hypothesis, we trained a PPO algorithm using a decentralized ap-
proach, with each agent having its own policy rather than a shared policy among all



Figure 2. Learning curves for PPO on 0.1 and 0.05 dispersion increment configu-
ration

Figure 3. Learning curve comparison of PPO and DQN on 0.1 dispersion incre-
ment configuration



agents. This idea stemmed from mixed findings in recent literature, with some studies
indicating improvements [Albrecht et al. 2024] in training time and stability, while oth-
ers found no benefits or even detriments [Labanca 2024]. The training setup mirrored
Hypothesis 1 with a 0.1 dispersion increment, differing only in using unique policies per
agent. This allowed for direct comparisons with the standard PPO.

Decentralized training resulted in slower convergence, reduced stability, and infe-
rior policy performance. Figure 4 compares centralized and decentralized PPO learning
curves. Both centralized and decentralized approaches reached a mean reward of around
1.4, but the decentralized version took around two million steps compared to the central-
ized version’s 500,000 to a million steps. Mean actions were around 40 for centralized
and 50 for decentralized, indicating the decentralized approach was less efficient.

Figure 4. Learning curve comparison Centralized PPO vs Decentralized PPO.

The centralized approach consistently outperformed the decentralized one, with
higher mean rewards (centralized = 1.34 and decentralized = 0.94), lower action median
counts (centralized = 23 and decentralized = 41), and a higher success rate (centralized
= 75.44% and decentralized = 53.22%). Consequently, we decided to use centralized
training for all subsequent hypotheses.

The longer training times for decentralized training can be attributed to the addi-
tional resources required for multiple policies, each necessitating a separate neural net-
work. The lower mean reward is likely due to some agents learning sub-optimal policies,
significantly affecting overall performance in a complex problem with few agents.

H3: Does search trajectory information impact search results?



Figure 5. Learning curve comparison - PPO with trajectory information (matrix)
vs PPO with LSTM vs default PPO.

For this hypothesis, we trained a centralized PPO algorithm using two approaches:
(i) Trajectory-Based Probability Adjustment: modifying the probability matrix based on
the drone’s trajectory, reducing cell probability after a drone searches it and gradually
restoring it over time, and; (ii) LSTM Layer Integration: adding a Long Short-Term Mem-
ory (LSTM) layer to handle the sequential information of agent positions, replacing the
second fully connected layer in the positions branch of the neural network.

As seen in figure 5, the learning curves for PPO with trajectory information, both
matrix and LSTM, are similar to the default PPO configuration. The results from the
validation process, consisting of 5,000 simulations for each approach, also do not show
any difference. The success rate of PPO default was 75.44%, the success rate of PPO with
trajectory matrix was 75.98%, and the success rate of PPO with LSTM was 76.46%.

We hypothesize that the information in the environment’s observation is sufficient
for the algorithm’s Markov Decision Process (MDP) to select optimal actions, rendering
additional trajectory information redundant. It is speculated that trajectory information
might be more efficient in larger-scale searches with more agents and greater search area
overlap.

H4: Do agents develop new search patterns when there is multiple PIW?

This experiment differed from the others by including four PIWs instead of one
to determine whether agents adapt their behavior to multiple PIWs. The learning curve
in Figure 6 shows agents learning to coordinate their search as mean actions decrease



and mean rewards increase. The theoretical maximum reward is 8, but agents converged
around 5 after approximately three and a half million steps, with mean actions oscillating
around 80. This instability reflects the complexity of managing four distinct PIWs, each
with its own movement pattern.

Figure 6. Learning curve for PPO with 4 PIW.

The agents found all PIWs in only 21.54% of the tests, a lower success rate than
in other hypotheses. Further research and advanced RL features are needed to handle
the increased complexity and stochastic nature of realistic environments. Although the
agents found an average of 2.3 PIWs per test, achieving a 100% success rate is crucial for
real-world scenarios where all PIWs must be rescued. While this result is a step forward
in RL research, it highlights the need for ongoing improvement to ensure all PIWs are
consistently located.

5. Conclusion
This paper presented an environment for the problem of Search and Rescue (SAR) ship-
wrecked people in the ocean and evaluated different RL algorithms for different scenarios
in SAR. In the first hypothesis, we aimed to test if RL techniques have superior adapt-
ability and performance compared to a pre-determined, informed algorithm, especially
when PIWs deviate from regions of highest probability. The results confirm that RL al-
gorithms outperform the greedy approach in all metrics. PPO achieved a 75.44% success
rate with a 0.1 dispersion increment and 83% with a 0.05 increment, compared to the
greedy algorithm’s 35.84% and 50.18%, respectively. DQN failed to learn an effective
strategy.

The second hypothesis examined the effect of independent networks on conver-
gence time and training stability. Decentralized networks required more training steps and
were less stable than centralized ones. This is due to the additional resources needed for
multiple policies, each training its own neural network. The lower performance is likely



because not all agents learn an optimal policy, significantly impacting results in complex
problems.

For the third hypothesis, we tested the impact of historical search data on search
efficiency. The results showed no significant change in behavior or efficiency. We con-
cluded that the environment’s observations provide sufficient information for the algo-
rithm to choose good actions. The additional data did not enhance performance, but it
might be more impactful in missions with greater search area overlap.

Finally, the fourth hypothesis investigated agent organization and movement pat-
terns in scenarios with multiple PIWs. Agents consistently located more than half of the
PIWs, which is considered a success solely in research terms, since this still signifies loss
of life in real-world applications. Although the agents didn’t find all PIWs in most tests,
they effectively coordinated their search, improving their performance over time. The
increased complexity of managing multiple PIWs led to sub-optimal solutions, but the
algorithms showed potential for handling such scenarios, to achieve an applicable 100%
success rate more research is needed.
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[Li et al. 2015] Li, X., Li, L., Gao, J., He, X., Chen, J., Deng, L., and He, J. (2015). Re-
current reinforcement learning: A hybrid approach. arXiv preprint arXiv:1509.03044.

[Liang et al. 2018] Liang, E., Liaw, R., Moritz, P., Nishihara, R., Fox, R., Goldberg, K.,
Gonzalez, J. E., Jordan, M. I., and Stoica, I. (2018). Rllib: Abstractions for distributed
reinforcement learning. International Conference on Machine Learning.

[Mnih et al. 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Belle-
mare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S.,
Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S.,
and Hassabis, D. (2015). Human-level control through deep reinforcement learning.
Nature, 518:529–533.

[Schuldt and Kurucar 2016] Schuldt, D. W. and Kurucar, J. A. (2016). Maritime search



and rescue via multiple coordinated uas. Technical report, Defense Technical Informa-
tion Center.

[Schulman et al. 2017] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov,
O. (2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347,
abs/1707.06347.

[Silver et al. 2021] Silver, D., Singh, S., Precup, D., and Sutton, R. S. (2021). Reward is
enough. Artificial Intelligence, 299:103535.

[Wu et al. 2024] Wu, J., Cheng, L., Chu, S., and Song, Y. (2024). An autonomous cover-
age path planning algorithm for maritime search and rescue of persons-in-water based
on deep reinforcement learning. Ocean Engineering, 291:116403.


