data(iris)
iris$Species <- NULLcor(iris)##              Sepal.Length Sepal.Width Petal.Length Petal.Width
## Sepal.Length    1.0000000  -0.1175698    0.8717538   0.8179411
## Sepal.Width    -0.1175698   1.0000000   -0.4284401  -0.3661259
## Petal.Length    0.8717538  -0.4284401    1.0000000   0.9628654
## Petal.Width     0.8179411  -0.3661259    0.9628654   1.0000000plot(iris$Petal.Length, iris$Sepal.Length, pch=19, col='red')plot(iris$Sepal.Width, iris$Sepal.Length, pch=19, col='red')sapply(iris, sd)## Sepal.Length  Sepal.Width Petal.Length  Petal.Width 
##    0.8280661    0.4358663    1.7652982    0.7622377hist(iris$Sepal.Width, main="Menor SD encontrado", col='cyan', xlim=c(0,8))hist(iris$Petal.Length, main="Maior SD encontrado", col='cyan', xlim=c(0,8))summary(iris)##   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
##  Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
##  1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
##  Median :5.800   Median :3.000   Median :4.350   Median :1.300  
##  Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
##  3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
##  Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500library(UsingR)## Loading required package: MASS
## Loading required package: HistData
## Loading required package: Hmisc
## Loading required package: grid
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
## 
## Attaching package: 'Hmisc'
## 
## The following objects are masked from 'package:base':
## 
##     format.pval, round.POSIXt, trunc.POSIXt, units
## 
## 
## Attaching package: 'UsingR'
## 
## The following object is masked from 'package:ggplot2':
## 
##     movies
## 
## The following object is masked from 'package:survival':
## 
##     cancerdata(survey)names(survey)##  [1] "Sex"    "Wr.Hnd" "NW.Hnd" "W.Hnd"  "Fold"   "Pulse"  "Clap"  
##  [8] "Exer"   "Smoke"  "Height" "M.I"    "Age"Age: idade em anos do estudante.
Existem valores NA no dataset? Quantos?
sum(is.na(survey))## [1] 107prop.table(table(survey$W.Hnd))## 
##       Left      Right 
## 0.07627119 0.92372881table(survey$Sex)## 
## Female   Male 
##    118    118library(ggplot2)
qplot(survey$Wr.Hnd, survey$NW.Hnd, col=survey$Sex, size=survey$Height)## Warning: Removed 29 rows containing missing values (geom_point).qplot(survey$Wr.Hnd, survey$NW.Hnd, col=survey$W.Hnd, size=survey$Pulse)## Warning: Removed 46 rows containing missing values (geom_point).abalos <- read.csv("http://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/all_month.csv")Entenda melhor o significado de cada atributo acessando o site http://earthquake.usgs.gov/earthquakes/feed/v1.0/csv.php.
Armazene o dia e horário quando os dados foram coletados.
diaHorario <- date()dim(abalos)## [1] 8582   22sapply(abalos, class)##            time        latitude       longitude           depth 
##        "factor"       "numeric"       "numeric"       "numeric" 
##             mag         magType             nst             gap 
##       "numeric"        "factor"       "integer"       "numeric" 
##            dmin             rms             net              id 
##       "numeric"       "numeric"        "factor"        "factor" 
##         updated           place            type horizontalError 
##        "factor"        "factor"        "factor"       "numeric" 
##      depthError        magError          magNst          status 
##       "numeric"       "numeric"       "integer"        "factor" 
##  locationSource       magSource 
##        "factor"        "factor"O R conseguiu importar corretamente todos os atributos com os tipos corretos?
Quantos tipos distintos de abalos existem no dataset?
levels(abalos$type)## [1] "chemical explosion" "earthquake"         "explosion"         
## [4] "other event"        "quarry blast"cor(abalos$depth, abalos$mag)## [1] NAplot(abalos$depth, abalos$mag, pch=19, col="green")qplot(abalos$depth, abalos$mag, col=abalos$type, 
      xlab="Profundidade", ylab="Magnitude")## Warning: Removed 31 rows containing missing values (geom_point).boxplot(abalos$mag ~ abalos$type, 
        col=c('red','blue','cyan','green'), 
        main="Comparativo de magnitude", 
        ylab="Magnitude")datas <- as.Date(abalos$time, "%Y-%m-%dT%H:%M:%S")
eventos <- as.data.frame(table(datas))
names(eventos) <- c('data','quantidade')
eventos$data <- as.Date(eventos$data, "%Y-%m-%d")
plot(eventos$data, eventos$quantidade, type='o', xlab="PerÃodo", ylab="Quantidade de abalos"
     , main="Quantidade de abalos sÃsmicos por dia", col='red')library(maps)## 
##  # ATTENTION: maps v3.0 has an updated 'world' map.        #
##  # Many country borders and names have changed since 1990. #
##  # Type '?world' or 'news(package="maps")'. See README_v3. #library(mapdata)
map(mar = c(0.1, 0.1, 0.1, 0.1), myborder=0.00001)
points(abalos$longitude, abalos$latitude, col=2, pch=20)library(maps)
library(mapdata)
map(mar = c(0.1, 0.1, 0.1, 0.1), myborder=0.00001)
points(abalos$longitude, abalos$latitude, col=abalos$type, pch=20)
legend("topright", 
       legend = levels(abalos$type), 
       text.col = 1:length(abalos$type),
       cex=0.6)library(maps)
library(mapdata)
map(mar = c(0.1, 0.1, 0.1, 0.1), myborder=0.00001)
points(abalos$longitude, abalos$latitude, col=abalos$magType, pch=20)
legend("topright", 
       legend = levels(abalos$magType), 
       text.col = 1:length(abalos$magType),
       cex=0.6)