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Abstract. During the last 5 years, research on Human Activity Recognition 
(HAR) has reported on systems showing good overall recognition performance. 
As a consequence, HAR has been considered as a potential technology for e-
health systems. Here, we propose a machine learning based HAR classifier. We 
also provide a full experimental description that contains the HAR wearable de-
vices setup and a public domain dataset comprising 165,633 samples. We  
consider 5 activity classes, gathered from 4 subjects wearing accelerometers 
mounted on their waist, left thigh, right arm, and right ankle. As basic input fea-
tures to our classifier we use 12 attributes derived from a time window of 
150ms. Finally, the classifier uses a committee AdaBoost that combines ten De-
cision Trees. The observed classifier accuracy is 99.4%.   

Keywords: Human Activity Recognition, Wearable Computing, Machine 
Learning, Accelerometer. 

1 Introduction 

With the rise of life expectancy and ageing of population, the development of new 
technologies that may enable a more independent and safer life to the elderly and the 
chronically ill has become a challenge [1]. Ambient Assisted Living (AAL) is one 
possibility to increase independence and reduce treatment costs, but it is still impera-
tive to generate further knowledge in order to develop ubiquitous computing applica-
tions that provide support to home care and enable collaboration among physicians, 
families and patients. 

Human Activity Recognition (HAR) is an active research area, results of which 
have the potential to benefit the development of assistive technologies in order to 
support care of the elderly, the chronically ill and people with special needs. Activity 
recognition can be used to provide information about patients’ routines to support the 
development of e-health systems, like AAL. Two approaches are commonly used for 
HAR: image processing and use of wearable sensors.  
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The image processing approach does not require the use of equipment in the user’s 
body, but imposes some limitations such as restricting operation to the indoor envi-
ronments, requiring camera installation in all the rooms, lighting and image quality 
concerns and, mainly, users’ privacy [2]. The use of wearable sensors minimizes these 
problems, but requires the user to wear the equipment through extended periods of 
time. Hence, the use of wearable sensors may lead to inconveniences with battery 
charges, positioning, and calibration of sensors [3].  

We performed a literature review on HAR using wearable accelerometers data, 
discussed in Section 2. This review unfolded an intense growth on the number of 
publications related to wearable accelerometers in the last 5 years. It was further ob-
served that few works provide public datasets for benchmarking and there is no suffi-
cient information on the specification and orientation of the sensors deployed. The 
absence of public datasets and information for the reproduction of the studies are 
evidences of the need for maturity within the area. In view of such results, it was de-
cided for the investigation of activities recognition by means of wearable accelerome-
ters approach.  

In this project we built a wearable device with the use of 4 accelerometers posi-
tioned in the waist, thigh, ankle and arm. The design of the wearable, details on the 
sensors used, and other necessary information for the reproduction of the device are 
shown on Section 3. We collected data from 4 people in in different static postures; 
and dynamic movements with which we trained a classifier using the AdaBoost me-
thod and decision trees C4.5 [3, 5]. The design of the wearable, data collection, ex-
traction and selection of features and the results obtained with our classifier are de-
scribed in Section 4.  Conclusion and future work are discussed in Section 5. 

2 Literature Review 

The results presented in this section are part of a more comprehensive systematic 
review about HAR with wearable accelerometers. The procedures used for the results 
of this paper are the same used in a traditional systematic review: we defined a specif-
ic research question, used a search string in the database, applied exclusion criteria 
and reviewed resulting publications in qualitative and quantitative form. For the quan-
titative analysis, we collected metadata from articles and used descriptive statistics to 
summarize data. The method application is described as follows: 

• Research Question: What are the research projects conducted in recognition of 
human activities and body postures with the use of accelerometers? 

• Search string: (((("Body Posture") OR "Activity Recognition")) AND (accelerome-
ter OR acceleration)). Refined by: publication year: 2006 – 2012; 

• Results in IEEE database: 144 articles; 
• Exclusion criteria:  

─ Use of accelerometers in smartphones; 
─ HAR by image processing; 
─ Not related to human activity (robots, in general); 
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─ Different task (composite activities, games, gesture input recognition, etc.); 
─ Researches in the area of sensors network, without development of predic-

tors/classifiers; 
─ It was used the most recent publication when the same result was published in 

different moments; 
─ Research about energy consumption in wearable devices; 

• Result: 69 articles for quantitative and qualitative analysis. 

For the quantitative analysis the metadata drawn from the articles were as follows: 
research title, year, quantity of accelerometers, use of other sensors, accelerometers 
position, classes, machine learning technique (or threshold based algorithms), number 
of subjects and samples, test mode (training dataset + test dataset, cross-validation 
with modes: k-fold, leave-one-example-out, or leave-one-subject-out), percentage of 
correctly classified samples. It was observed in relation to the publication year, that 
there is a growing number of publications on HAR with Wearable Accelerometers, as 
shown in Figure 1, which shows evidence of the importance of the approach for the 
Human Activity Recognition community. 

 

  

Fig. 1. IEEE publications based on wearable accelerometers’ data for HAR  

 
In the surveyed works, we observed the use of up to 4 accelerometers in the collec-

tion of data for the most part of the works. The most widely used test mode is the k-
fold cross-validation; however, less-dependable tests and even non-standard tests 
were performed in some recent works. Another important data identified in the litera-
ture is that most works present a percentage starting at 90% of success rate in the 
activities’ classification. However, in just 7 works it was informed the dataset size. A 
list of metadata drawn from the most recent publications (2012 and 2011) is shown on 
Table 1. 
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Table 1. HAR based on accelerometers’ data from 2012 and 2011 (IEEE database) 

Research 
# of 

sensors 
Accelerometers' position Solution 

# of 
users 

Learning 
mode 

Test mode 
Correct 

(%) 

Liu et. al. (2012) 
[6] 1 

hip, wrist (no info about 
orientation) 

SVM 50 
Super-
vised 

leave-one-out  88.1 

Yuting et al. 
(2011) [7] 3 

chest and both thighs (no 
info about orientation) 

Threshold-
based  10 -- -- 98.6 

Sazonov et al. 
(2011) [8] 1 foot SVM 9 

Super-
vised 

4-fold cross 
validation 

98.1 

Reiss & Stricker 
(2011) [9] 3 lower arm, chest and foot 

Boosted Deci-
sion Tree 8 

Super-
vised 

8-fold cross 
validation 

90.7 

Min et al., (2011) 
[10] 9 torso, arms and legs 

Threshold-
based  3 -- 

Comparison 
with k-means 

96.6 

Maekawa & 
Watanabe (2011) 
[11] 

4 
wrists of both hands, waist, 
and right thigh 

HMM  40 
Unsu-
pervised 

leave-one-out  98.4 

Martin et al. 
(2011) [12] 2 hip, foot and chest Threshold-

based  5 -- -- 89.4 

Lei et al. (2011) 
[3] 4 

waist, chest, thigh, and side 
of the body 

Naive Bayes 8 
Super-
vised 

Several, w/ no 
cross validation 

97.7 

Alvarez et al. 
(2011) [13] 1 

centered in the back of the 
person 

Genetic fuzzy 
finite state 
machine

1 
Super-
vised 

leave-one-out  98.9 

Jun-ki & Sung-Bae 
(2011) [14] 5 

forehead, both arms, and 
both wrists 

Naive Bayes 
and SVM 

3 
Super-
vised 

leave-one-out  99.4 

Ioana-Iuliana & 
Rodica-Elena 
(2011) [15] 

2 
right part of the hip, lower 
part of the right leg 

Neural 
Networks 

4 
Super-
vised 

66% trainning  
vs 33% test 

99.6 

Gjoreski et al. 
(2011) [2] 4 chest, waist, ankle and thigh

Naïve Bayes, 
SVM, C4.5,  
Random Forest

11 
Super-
vised 

 Leave-one-
person-out 

90.0 

Feng, Meiling, 
and Nan (2011) 
[16] 

1 Waist 
Threshold-
based  20 -- -- 94.1 

Czabke, Marsch, 
and Lueth (2011) 
[17] 

1 Trousers’ Pocket 
Threshold-
based 10 -- -- 90.0 

Chernbumroong, 
et al. (2011) [18] 1 Non-dominant wrist (watch)

C4.5 and Neural 
Networks 7 

Super-
vised 

5-fold cross-vali-
dation 

94.1 

Bayati & 
Chavarriaga 
(2011) [19] 

-- 
Simulations instead of real 
accelerometers 

Expectation 
Maximization

-- 
Unsuper-
vised 

Not mentioned 86.9 

Atallah et al 
(2011) [20] 7 

ear, chest, arm, wrist, waist, 
knee, and ankle 

Feature 
Selection 
algorithms* 

11 
Super-
vised 

Not applied -- 

Andreu et al. 
(2011) [21] 1 Not mentioned 

fuzzy rule-
based 

-- 
Online 
learning 

-- 71.4 

* This work is about sensor positioning and feature extraction 
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In the set of articles assessed, it was observed that the subject independent analysis 
has been less explored: just 3 out of 69 articles presented a subject independent analy-
sis. The primary alternatives presented by the authors in order to improve the predic-
tion performance in subject independent tests are: (1) increase of dataset, performing 
the data collection from subjects of different profiles; (2) adapting learning to a subject 
from data collected from subjects with similar physical characteristics [11]; and (3) 
investigation of subject independent features and more informative of the classes [22]. 

Among the articles assessed, we observed a discussion on the importance of the lo-
cation of the accelerometers on the body. The positions in which wearable accelerome-
ters most commonly mounted on are the waist, next to the center of mass, and chest. A 
research investigates specifically the development of classifiers adaptable to different 
amounts of accelerometers [20]. 

It was also observed that the main problematic issue found was the unavailability of 
the dataset, which restrains the comparison of results between researches. There is also 
a lack of information about the orientation of the sensors axis in most of the researches, 
although the location is usually well described. In some research it was not informed 
the model of sensor used. The absence of information about orientation and sensors 
model impairs the reproduction of the wearable devices. 

As the area matures, it is imperative that datasets be published in order to enable 
comparison of results. The importance of disclosing datasets for benchmarking is also 
commented by Yang & Lianwen [23] as it acknowledges that “the recognition algo-
rithms rely heavily on the dataset”. The authors also verified the unavailability of data-
sets in the area and denounced the existence of unpublished proprietary datasets. As a 
form of contribution, the authors made available a dataset for benchmark in HAR, in 
addition to details on the location, orientation and model of sensors used. The dataset 
provided by the authors is small, with only 1278 samples, but it is an important step 
towards the maturity of this research area. It is necessary that more datasets are publi-
cized, about different activities, and that accurate information on the model, position-
ing and orientation of sensors are provided in order to enable the comparison of re-
search results in the HAR area by means of wearable accelerometers. 

In order to enable the reproduction of the literature review discussed in this article, 
all publications assessed in this paper are available in RIS format, in the following web 
address: http://groupware.les.inf.puc-rio.br/har. In this research, the bibliographic man-
agement and publishing solution used was the EndNote X5™. The library in EndNote 
format is also available in this project web address.  

3 Building Wearable Accelerometers for Activity Recognition 

Our wearable device comprised 4 tri-axial ADXL335 accelerometers connected to an 
ATmega328V microcontroller. All modules were of the Lilypad Arduino toolkit. The 
wearable device and the accelerometers’ positioning and orientation diagram are illu-
strated in Figure 2. 
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Fig. 2. Wearable device built for data collection 

The accelerometers were respectively positioned in the waist (1), left thigh (2), 
right ankle (3), and right arm (4). All accelerometers were calibrated prior to the data 
collection. The calibration consists of positioning the sensors and the performance of 
the reading of values to be considered as “zero”. From the calibration, the read values 
of each axis during data collection are subtracted from the values obtained at the time 
of the calibration.  

The purpose of the calibration was to attenuate the peculiar inaccuracy issues of 
this type of sensor. Because of this, the sensors were calibrated on top of a flat table in 
the same position. Another regular type of calibration is the calibration by subject [3], 
in which the accelerometers are read and calibrated after positioned in the subjects’ 
bodies. The calibration by subject may benefit the data collection provided that it 
enables the obtainment of more homogeneous data. However, it makes the use of the 
wearable after completion more complex. 

Even though the Lilypad Arduino platform was design to be used with conductive 
thread, we used wired cablesin order to increase robustness, to enable on-the-fly 
changes in the circuit and to facilitate reprogramming the microcontroller. The as-
sembly took into consideration the ease of move by the users. The source code (sketch 
in the Arduino Programming Language) is available at http://groupware.les.inf.puc-
rio.br/har. 

4 Building a Classifier for Wearable Accelerometers’ Data 

We took the following steps to develop a classifier for the data achieved from the 4 
accelerometers: data collection, data pre-processing, feature extraction, feature selec-
tion, and 10-fold cross-validation type tests to assess the accuracy of the classifier 
developed. 

4.1 Data Collection 

We collected data during 8 hours of activities, 2 hours with each one of the 4 subjects: 
2 men and 2 women, all adults and healthy. The protocol was to perform each activity 
separately. The profile of each subject is shown in Table 2: 
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Table 2. Characteristics of the participants 

Subject Genre Age Height Weight Instances
A Female 46 y.o. 1.62m 67kg 51,577
B Female 28 y.o. 1.58m 53kg 49,797
C Male 31 y.o. 1.71m 83kg 51,098
D Male 75 y.o. 1.67m 67kg 13,161*
* A smaller number of observed instances because of the participant’s age 

Although the number of subjects is small, the amount of data collected is reasona-
ble (2 hours for each subject) and the profile is diverse: women, men, young adults 
and one Elder. At total it was collected 165,633 samples for the study; the distribution 
of the samples between the classes is illustrated in Figure 3.  

 

Fig. 3. Frequency of classes between collected data 

4.2 Feature Extraction 

From the data collected from the tri-axial accelerometers it was performed a data pre-
processing, following some instructions from [24]. It was generated a 1 second time 
window, with 150ms overlapping. The samples were grouped and descriptive statistic 
was used for generating part of the derivate features. The derivate features of accele-
ration in axis x, y, and z and of the samples grouped are listed as follows: 

• For each accelerometer: Euler angles of roll and pitch and the length (module) of 
the acceleration vector (called as total_accel_sensor_n); 

• Variance of roll, pitch and module of acceleration for all samples in the 1 second 
window  (approximately 8 reads per second), with a 150ms overlapping; 

• A column discretizing the module of acceleration of each accelerometer, defined 
after a statistic analysis comparing the data of 5 classes; 

The final dataset generated with all the derived features is available for public free use 
at http://groupware.les.inf.puc-rio.br/har.  

4.3 Feature Selection 

With the purpose of reducing the use of redundant features and select more informa-
tive features in relation to the classes, we used Mark Hall’s selection algorithm based 
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on correlation [25]. The algorithm was configured to adopt the “Best First” method, 
which has a greedy strategy based on backtracking. The 12 features selected by 
through this procedure were: (1) Sensor on the Belt: discretization of the module of 
acceleration vector, variance of pitch, and variance of roll; (2) Sensor on the left 
thigh: module of acceleration vector, discretization, and variance of pitch; (3) Sensor 
on the right ankle: variance of pitch, and variance of roll; (4) Sensor on the right arm: 
discretization of the module of acceleration vector; From all sensors: average accele-
ration and standard deviation of acceleration. 

4.4 Classifier for Activity Recognition 

Ross Quinlan’s [4] C4.5 decision tree was used in connection with the AdaBoost 
ensemble method [5] for classifying tasks. The C4.5 tree is an evolution proposed by 
Ross Quinlan to the ID3 algorithm (Iterative Dichotomiser 3) and its main advantage 
over the ID3 is a more efficient pruning. The boosting AdaBoost method “tends to 
generate distributions that concentrate on the harder examples, thus challenging the 
weak learning algorithm to perform well on these harder parts of the sample space” 
[5]. In a simplified manner, with the use of AdaBoost, the C4.5 algorithm was trained 
with a different distribution of samples in each iteration, thus favoring the “hardest” 
samples.  

We used AdaBoost with 10 iterations and configured the C4.5 tree for a confidence 
factor of 0.25. The overall recognition performance was of 99.4% (weighted average) 
using a 10-fold cross validation testing mode, with the following accuracies per class: 
“sitting” 100%, “sitting down” 96.9%, “standing” 99.8%, “standing up” 96.9%, and 
“walking” 99.8%. The confusion matrix is presented in Table 3. 

Table 3. Confusion Matrix 

Predicted class  
Sitting Sitting down Standing Standing Up Walking   
50,601 9 0 20 1 Sitting

A
ctu

al class 

10 11,484 29 297 7 Sitting down
0 4 47,342 11 13 Standing
14 351 24 11,940 85 Standing up
0 8 27 60 43,295 Walking

The results obtained in this research are very close to the top results of the litera-
ture (99.4% in [14], and 99.6% in [15]), even though, it is hard to compare them. 
Each research used a different dataset, a different set of classes, and different test 
modes. 

5 Conclusion and Future Works 

This work discussed a literature review on the recognition of activities using wearable 
accelerometers data obtained , a wearable device consisted of 4 accelerometers , and the 
data collection procedure, extraction and selection of features for the development of a 
classifier for human activities; The main contributions of this article are:  

Fabricio J Barth
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• A comparative table of the researches in the HAR from wearable accelerometers; 
• A wearable device for data collection of human activities; 
• The offer of a public domain dataset with 165,633 samples and 5 classes, in order to 

enable other authors to continue the research and compare the results. 

In future works we want to include new classes in the dataset and investigate the clas-
sifier’s performance with the use of accelerometers in different positions and in different 
quantities. Another future work is the qualitative recognition of activities, which con-
sists in recognizing different specifications for the performance of the same activity, 
such as different specifications for weight lifting. 
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